skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wagner, Sasha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cooper, Lee W. (Ed.)
    Dissolved black carbon (DBC) is the condensed aromatic portion of dissolved organic matter produced from the incomplete combustion of biomass and other thermogenic processes. DBC quantification facilitates the examination of the production, accumulation, cycling, transformation, and effects of biologically recalcitrant condensed aromatic carbon in aquatic environments. Due to the heterogeneous nature of DBC molecules, concentrations are difficult to measure directly. Here, the method for DBC quantification consists of oxidizing condensed aromatic carbon to benzenepolycarboxylic acids (BPCAs), which are used as proxies for the assessment of DBC in the original sample. The concentrations of oxidation products (BPCAs) are quantified using high-performance liquid chromatography. DBC concentrations are determined from the concentration of BPCAs using a previously established conversion factor. Details and full descriptions of the preparative and analytical procedures and techniques of the BPCA method are usually omitted for brevity in published method sections and method-specific papers. With this step-by-step protocol, we aim to clarify the steps of DBC analysis, especially for those adopting or conducting the BPCA method for the first time. 
    more » « less
  2. Abstract Central African tropical forests face increasing anthropogenic pressures, particularly in the form of deforestation and land-use conversion to agriculture. The long-term effects of this transformation of pristine forests to fallow-based agroecosystems and secondary forests on biogeochemical cycles that drive forest functioning are poorly understood. Here, we show that biomass burning on the African continent results in high phosphorus (P) deposition on an equatorial forest via fire-derived atmospheric emissions. Furthermore, we show that deposition loads increase with forest regrowth age, likely due to increasing canopy complexity, ranging from 0.4 kg P ha −1  yr −1 on agricultural fields to 3.1 kg P ha −1  yr −1 on old secondary forests. In forest systems, canopy wash-off of dry P deposition increases with rainfall amount, highlighting how tropical forest canopies act as dynamic reservoirs for enhanced addition of this essential plant nutrient. Overall, the observed P deposition load at the study site is substantial and demonstrates the importance of canopy trapping as a pathway for nutrient input into forest ecosystems. 
    more » « less
  3. Abstract There is growing evidence that the composition of river microbial communities gradually transitions from terrestrial taxa in headwaters to unique planktonic and biofilm taxa downstream. Yet, little is known about fundamental controls on this community transition across scales in river networks. We hypothesized that community composition is controlled by flow‐weighted travel time of water, in combination with temperature and dissolved organic matter (DOM), via similar mechanisms postulated in the Pulse‐Shunt Concept for DOM. Bacterioplankton and biofilm samples were collected at least quarterly for 2 yr at 30 sites throughout the Connecticut River watershed. Among hydrologic variables, travel time was a better predictor of both bacterioplankton and biofilm community structure than watershed area, dendritic distance, or discharge. Among all variables, both bacterioplankton and biofilm composition correlated with travel time, temperature, and DOM composition. Bacterioplankton beta‐diversity was highest at shorter travel times (< 1 d) and decreased with increasing travel time, showing progressive homogenization as water flows downstream. Bacterioplankton and biofilm communities were similar at short travel times, but diverged as travel time increased. Bacterioplankton composition at downstream sites more closely resembled headwater communities when temperatures were cooler and travel times shorter. These findings suggest that the pace and trajectory of riverine bacterioplankton community succession may be controlled by temperature‐regulated growth rate and time for communities to grow and change. Moreover, bacterioplankton, and to a lesser extent biofilm, may experience the same hydrologic forcing hypothesized in the Pulse‐Shunt Concept for DOM, suggesting that hydrology controls the dispersal of microbial communities in river networks. 
    more » « less
  4. Abstract Coastal mountain rivers export disproportionately high quantities of terrestrial organic carbon (OC) directly to the ocean, feeding microbial communities and altering coastal ecology. To better predict and mitigate the effects of wildfires on aquatic ecosystems and resources, we must evaluate the relationships between fire, hydrology, and carbon export, particularly in the fire‐prone western United States. This study examined the spatiotemporal export of particulate and dissolved OC (POC and DOC, respectively) and particulate and dissolved black carbon (PBC and DBC, respectively) from five coastal mountain watersheds following the 2020 CZU Lightning Complex Fires (California, USA). Despite high variability in watershed burn extent (20–98%), annual POC, DOC, PBC, and DBC concentrations remained relatively stable among the different watersheds. Instead, they correlated significantly with watershed discharge. Our findings indicate that hydrology, rather than burn extent, is a primary driver of post‐fire carbon export in coastal mountain watersheds. 
    more » « less
  5. Abstract A portion of the charcoal and soot produced during combustion processes on land (e.g., wildfire, burning of fossil fuels) enters aquatic systems as dissolved black carbon (DBC). In terms of mass flux, rivers are the main identified source of DBC to the oceans. Since DBC is believed to be representative of the refractory carbon pool, constraining sources of marine DBC is key to understanding the long-term persistence of carbon in our global oceans. Here, we use compound-specific stable carbon isotopes (δ13C) to reveal that DBC in the oceans is ~6‰ enriched in13C compared to DBC exported by major rivers. This isotopic discrepancy indicates most riverine DBC is sequestered and/or rapidly degraded before it reaches the open ocean. Thus, we suggest that oceanic DBC does not predominantly originate from rivers and instead may be derived from another source with an isotopic signature similar to that of marine phytoplankton. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)